BASIS—These fuse links are tested in accordance with the procedures described in the latest issue of IEEE Standard C37.42 to comply with the latest issue of IEEE Standard C37.41 to comply with the latest issue of IEEE Standard C37.42. As required by this standard, the minimum melting and total clearing curves are based on tests starting with the fuse link at an ambient temperature of 25°C (77°F) and no initial load.

CONSTRUCTION—Fusible elements for fuse links rated 5KSR through 200KSR amperes are nickel-chrome; fusible elements for fuse links rated 20KSR through 65KSR amperes are silver-copper eutectic; and fusible elements for fuse links rated 80KSR through 165KSR amperes are silver. All are of solid busbar construction to their terminals.

APPLICATION—These fuse links should never be exposed to loading in excess of the peak-load capabilities listed in S&C Information Bulletin 952-580.

Because fuse links having nickel-chrome, nickel, silver-copper eutectic, or silver element construction are not subject to damage by aging or transient overcurrents, it is unnecessary to replace unfused fuse links of any of these constructions in single-phase or three-phase installations when one or more fuse links have blown.

COORDINATION—These curves represent the total time required for a fuse link to melt and interrupt a fault current, and they should be followed in coordination problems where fuse links are applied as “protecting” devices.

Any preloading reduces melting time. With respect to the “protected” fuse, the effect of preloading must be determined and adjustments made to its minimum melting curve.

• When close coordination is required
 • When automatic circuit reclosers or three-shot cutouts are involved
 • When, regardless of the preciseness of coordination, the fuse link is subjected to temporary overloads
 • If close coordination is to be achieved, oversizing must be avoided since it causes a significant shift in time-current characteristics.

The exclusive use of S&C Positrol Fuse Links—because of their inherently narrower tolerance band—will expand the scope of coordination problems where fuse links are applied as “protecting” devices.

Any preloading reduces melting time. With respect to the “protected” fuse, the effect of preloading must be determined and adjustments made to its minimum melting curve.

• Coordination through a greater range, and to higher levels of fault current, with respect to automatic circuit reclosers
• Coordination to higher levels of fault current with respect to sequence operation of fuse links

The breadth of coordination described above can only be achieved by the use of S&C Positrol Fuse Links.

NOTE—A coordination scheme designed to take full advantage of the nondamageability and the superior coordination capabilities of S&C Positrol Fuse Links may not function satisfactorily if fuse links of a similar speed but of other makes are substituted. However, S&C “KSR” Speed Positrol Fuse Links can replace, on a one-for-one basis, Kearney Type “K” fuse links in existing coordination schemes. Such replacements are not subject to nuisance fuse operations (“sneak-outs”) due to damage from surge currents, load cycling, vibration, and aging.

FUSE LINKS AVAILABLE

<table>
<thead>
<tr>
<th>Style</th>
<th>Ampere Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal</td>
<td>3KSR through 200KSR</td>
</tr>
<tr>
<td>Extra-Performance</td>
<td>3KSR through 200KSR</td>
</tr>
</tbody>
</table>

● No longer available, listed for reference only.