Minimum Melting Time–Current Characteristic Curves

SMU Fuse Units—S&C “K” Speed

BASIS—These fuse units are tested in accordance with the procedures described in IEEE Standard C37.41, and they are rated to comply with IEEE Standard Specifications for Distribution Cut-outs and Fuse Links, C37.42. As required by these standards, the minimum melting current is not less than 200% of fuse-unit ampere rating, and the minimum melting and total clearing curves are based on tests starting with the fuse unit at an ambient temperature of 25°C (77°F) and no initial load.

CONSTRUCTION—Fusible elements for fuse units rated 3K amperes are nickel-chrome and under controlled tension; fusible elements for fuse units rated 6K through 200K amperes are silver and helically coiled. All are of solderless construction.

TOLERANCES—Curves are plotted to minimum test points. Maximum variations expressed in current values are:
- Plus 10% for fuse links rated 6K through 200K amperes
- Plus 20% for fuse links rated 3K amperes ratings

APPLICATION—As with all high-voltage fuses, these fuse units are intended to accommodate overloads, not to interrupt them. Accordingly, they feature fusible elements designed with a minimum melting current of 200% of the fuse-unit ampere rating (for fuse units rated 100 amperes or less) or 240% of the fuse-unit ampere rating (for fuse units rated over 100 amperes). As a result, these fuse units have considerable peak-load capabilities; however, they should never be exposed to loading in excess of the peak-load capabilities listed in S&C Information Bulletin 242-199.

Because fuse links having silver element construction are not subject to damage by aging or transient overcurrents, it is unnecessary to replace blown fuse units of either of these constructions in single-phase or three-phase installations when one or more fuse links has blown.

COORDINATION—Any preloading reduces melting time. While this phenomenon is especially pronounced in other makes of fuses having minimum melting currents appreciably less than 200% of rating, the effect of preloading must nonetheless be determined for the fuse units represented by these curves (see S&C Information Bulletin 242-199), and adjustments to these curves must be made when:
- Close coordination is required
- Regardless of the preciseness of coordination, the fuse link is subjected to temporary overloads

There are cases where the coordination requirements may be very stringent, for example, in coordinating a transformer primary fuse with a secondary breaker and source-side breaker. The time interval between the operating characteristics of the two breakers may be very narrow. Under these circumstances, there must be an extremely short time interval between the minimum melting and the total clearing characteristics of the fuse.

The fuse units represented by these curves possess this short time interval feature because—having a nondamageable fusible element of precise construction—they require:
- As little as 10% total tolerance in melting current compared to the 20% tolerance of many fuses (20% and 40% respectively in terms of time)
- No “safety-zone” or setback allowances

The narrow time band normally will provide the desired coordination. If the selected S&C “K” Speed fuse unit does not meet the coordination requirements, check to see if the same ampere rating in the S&C Standard Speed, S&C Slow Speed, or S&C Very Slow Speed will satisfy.

FUSE UNITS AVAILABLE

<table>
<thead>
<tr>
<th>Fuse Unit</th>
<th>kV Nom. Ratings</th>
<th>Ampere Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMU-20®</td>
<td>14.4 and 34.5</td>
<td>3K through 200K</td>
</tr>
</tbody>
</table>

- These curves are also applicable to a previous SMD-20 Fuse Unit design.