TOTAL CLEARING TIME-CURRENT CHARACTERISTIC CURVES

SMU FUSE UNITS—S&C “K” SPEED

BASE—These fuse units are tested in accordance with the procedures described in ANSI Standard C27.41-1981, and they are rated to comply with ANSI Standard Specifications for Distribution Cutouts and Fuse Links, C27.40-1981. As required by these standards, the minimum melting current is not less than 200% of fuse-unit ampere rating, and the minimum melting and total clearing curves are based on tests starting with the fuse unit at an ambient temperature of 25°C and no initial load.

CONSTRUCTION—Fusible elements for fuse units rated 3K amperes are nickel-chrome, under controlled tension; fusible elements for fuse units rated 6K through 200K amperes are silver, helically coiled. All are of solderless construction.

TOLERANCES—Curves are plotted to maximum test points. All variations are minus.

APPLICATION—Like all high-voltage fuses, these fuse units are intended to accommodate overloads, not to interrupt them. Accordingly, they feature fusible elements which are designed with a minimum melting current of 200% of the fuse-unit ampere rating (for fuse units rated 3K amperes) or 300% of the fuse-unit ampere rating (for fuse units rated 6K through 200K amperes) and are helically coiled. All are of solderless construction.

Do not assume that other fuses that do not employ S&C’s silver, helically coiled fusible element construction can better resolve a coordination impasse than the use of another ampere rating in one of the S&C speed options. Such other fuses, including “time-lag” speeds, “super-slow” speeds, and “high surge” speeds, require the use of “safety-zones” or setback allowances and, in addition, they have larger construction tolerances (plus 20% in current; plus 40% in terms of time). The application of these two factors will give a time interval between the adjusted minimum melting curve and the total clearing curve greater than in the case of S&C speed options.

COORDINATION—These curves represent the total time required for a fuse unit to melt and interrupt a fault current, and should be followed in coordination problems where fuses are applied as “protesting” devices.

Any preloading reduces melting time. With respect to the “protected” fuse, the effect of preloading must be determined and adjustments made to its minimum melting curve:

1. When close coordination is required.
2. When, regardless of the preciseness of coordination, the protected fuse is subjected to temporary overloads.

There are cases where the coordination requirements may be very searching, for example, in coordinating a transformer primary fuse with a secondary breaker and a source-side breaker. The time interval between the operating characteristics of the two breakers may be very narrow. Under these circumstances there must be an extremely short time interval between the minimum melting and the total clearing characteristics of the fuse.

The fuse units represented by these curves possess this short time interval feature, since—having a noninterchangeable fusible element construction—they should never be exposed to loading in excess of the peak-load capabilities listed in S&C Data Bulletin 240-190.

Since fuse units having nickel-chrome or silver element construction are not subject to damage by aging or transient overcurrents, it is unnecessary to replace unfused fuse units of either of these constructions in single-phase or three-phase installations when one or more fuse units have blown.

FUSE UNITS AVAILABLE

<table>
<thead>
<tr>
<th>Type</th>
<th>Kv Num. Ratings</th>
<th>Ampere Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SMU-20P</td>
<td>14.4</td>
<td>3K through 200K</td>
</tr>
</tbody>
</table>

SMU-20P is rated 14.4 kV and covers fuse units rated 3K through 200K amperes.