These refill units are tested in accordance with the procedures described in IEEE Standard C37.41, and they are rated to comply with IEEE Standard C37.46. As required by these standards, the minimum melting current is not less than 200% of the refill unit ampere rating, and the minimum melting curves are based on tests starting with the refill unit at an ambient temperature of 25°C (77°F) and no initial load.

CONSTRUCTION—Fusible elements for refill units rated 3E through 7E amperes are nickel-chrome, under controlled tension; fusible elements for refill units rated 10E through 400E amperes are silver and helically coiled. All are of solderless construction.

TOLERANCES—Curves are plotted to minimum test points. Maximum variations expressed in current values are:
- Plus 10% for 10E through 400E ampere ratings
- Plus 15% for 5E through 7E ampere ratings
- Plus 20% for 3E ampere rating

APPLICATION—As with all high-voltage fuses, these refill units are intended to accommodate overloads, not to interrupt them. Accordingly, they feature fusible elements designed with a minimum melting current of 200% of the refill-unit ampere rating (for refill units rated 100 amperes or less) or 220% of the refill-unit ampere rating (for refill units rated over 100 amperes). As a result, these refill units have considerable peak-load capabilities; however, they should never be exposed to loading in excess of the peak-load capabilities listed in S&C Information Bulletin 242-190.

Because refill units having nickel-chrome or silver element construction are not subject to damage by aging or transient overcurrents, it is unnecessary to replace unblown refill units of either of these constructions in single-phase or three-phase installations when one or more refill units has blown.

COORDINATION—Any preloading reduces melting time. While this phenomenon is especially pronounced in other makes of fuses having minimum melting currents appreciably less than 200% of rating, the effect of preloading must nonetheless be determined for the S&C refill units represented by these curves (see S&C Information Bulletin 242-190) and adjustments to these curves must be made when:
- Close coordination is required
- Regardless of the preciseness of coordination, the refill unit is subjected to temporary overloads

There are cases where the coordination requirements may be very exacting; for example, in coordinating a transformer-primary fuse with a secondary breaker and a source-side breaker. The time interval between the operating characteristics of the two breakers may be very narrow. Under these circumstances, an extremely short time interval must occur between the minimum melting and the total clearing characteristics of the fuse.

The refill units represented by these curves possess this short time interval feature because—having a nondamageable fusible element of precise construction—they require:
- As little as 10% total tolerance in melting current compared to the 20% tolerance of many fuses (20% and 40% respectively in terms of time)
- No "safety-zone" or setback allowances

REFILL UNITS AVAILABLE

<table>
<thead>
<tr>
<th>Refill Unit</th>
<th>KV Nom. Ratings</th>
<th>Ampere Ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td>SM-4®</td>
<td>7.2 through 34.5</td>
<td>3E through 200E</td>
</tr>
<tr>
<td>SM-5®</td>
<td>4.16 through 14.4</td>
<td>3E through 200E</td>
</tr>
<tr>
<td>SM-5®</td>
<td>25 through 34.5</td>
<td>3E through 200E</td>
</tr>
</tbody>
</table>

This narrow time band normally will provide the desired coordination. If the selected S&C Standard Speed refill unit does not meet the coordination requirements, check whether the same ampere rating in the S&C Slow Speed will satisfy.

Sometimes a selected ampere rating will fail to meet the coordination requirements in any available speed. In this case, the selection of another ampere rating for either the protecting or protected fuse usually will satisfy all requirements.

Do not assume other fuses that do not use S&C’s silver, helically coiled fusible-element construction can better resolve a coordination impasse than the use of another ampere rating in one of the S&C speed options. Such other fuses, including “time-lag” speeds, “super-slow” speeds, and “high-surge” speeds, require the use of “safety-zone” or setback allowances and they have larger construction tolerances (plus 20% in current; plus 40% in terms of time). The application of these two factors will give a time interval between the adjusted minimum melting curve and the total clearing curve greater than in the case of S&C speed options.