TOTAL CLEARING TIME-CURRENT CHARACTERISTIC CURVES

SM REFILL UNITS—S&C STANDARD SPEED

These refill units are tested in accordance with the procedures described in ANSI Standard C37.41-1981. As required by these standards, the minimum melting current is not less than 200% of refill-unit ampere rating, and the minimum melting and total clearing curves are based on tests starting with the refill unit at an ambient temperature of 25°C and no initial load.

APPLICATION—These refill units are tested in accordance with the procedures described in ANSI Standard C37.41-1981. As required by these standards, the minimum melting current is not less than 200% of refill-unit ampere rating, and the minimum melting and total clearing curves are based on tests starting with the refill unit at an ambient temperature of 25°C and no initial load.

CONSTRUCTION—Fuse elements for refill units rated 10E through 300E amperes are silver, elements for refill units rated 100 amperes or less) or 220% of the refill-unit ampere rating (for refill units rated over 100 amperes). As a result, these refill units have considerable peak-load capabilities; however, they should never be exposed to loading in excess of the peak-load capabilities listed in S&C Data Bulletin 210-190.

Since refill units having nickel-chrome or silver element construction can better resolve a coordination impasse than the use of another ampere rating in one of the S&C speed options, such other fuses, including “time-lag” speeds, “super-slow” speeds, and “high-surge” speeds, require the use of “safety-zone” or setback allowances and, in addition, they have larger construction tolerances (plus 20% in current; plus 40% in terms of time). The application of these two factors will give a time interval between the adjusted minimum melting curve and the total clearing curve greater than in the case of S&C speed options.

Do not assume that other fuses that do not employ S&C’s silver, helically coiled fusible element construction can better resolve a coordination impasse than the use of another ampere rating in one of the S&C speed options. Such other fuses, including “time-lag” speeds, “super-slow” speeds, and “high-surge” speeds, require the use of “safety-zone” or setback allowances and, in addition, they have larger construction tolerances (plus 20% in current; plus 40% in terms of time). The application of these two factors will give a time interval between the adjusted minimum melting curve and the total clearing curve greater than in the case of S&C speed options.

This narrow time band normally will provide the desired coordination. If the selected S&C Standard Speed refill unit does not meet the coordination requirements, the selection of another ampere rating for either the protecting or protected fuse usually will satisfy the requirements.

APPLICATION—Like all high-voltage fuses, these refill units are intended to accommodate overloads, not to interrupt them. Accordingly, they feature fusible elements which are designed with a minimum melting current of 200% of the refill-unit ampere rating (for refill units rated 100 amperes or less) or 220% of the refill-unit ampere rating (for refill units rated over 100 amperes). As a result, these refill units have considerable peak-load capabilities; however, they should never be exposed to loading in excess of the peak-load capabilities listed in S&C Data Bulletin 210-190.

Since refill units having nickel-chrome or silver element construction are not subject to damage by aging or transient overcurrents, it is unnecessary to replace unblown refill units of either of these constructions in single-phase or three-phase installations when one or more refill units have blown.

COORDINATION—These curves represent the total time required for a refill unit to melt and interrupt a fault current, and should be followed in coordination problems where fuses are applied as “pro- testing” devices.

Any preloading reduces melting time. With respect to the “pro- tested” fuse, the effect of preloading must be determined and adjustments made to its minimum melting curve:

1. When close coordination is required;
2. When, regardless of the preciseness of coordination, the protected fuse is subjected to temporary overloads.

There are cases where the coordination requirements may be very exacting; for example, in coordinating a transformer-primary fuse with a secondary breaker and a source-side breaker. The time interval feature, since—having a nondamageable fusible element construction can better resolve a coordination impasse than the use of another ampere rating in one of the S&C speed options, such other fuses, including “time-lag” speeds, “super-slow” speeds, and “high-surge” speeds, require the use of “safety-zone” or setback allowances and, in addition, they have larger construction tolerances (plus 20% in current; plus 40% in terms of time). The application of these two factors will give a time interval between the adjusted minimum melting curve and the total clearing curve greater than in the case of S&C speed options.

The refill units represented by these curves possess this short time interval feature, since—having a nondamageable fusible element construction they require:

1. An 8% to 10% tolerances in melting current—compared to the 20% tolerance of many fuses (20% and 40% respectively in terms of time);
2. No “safety-zone” or setback allowances.

S&C ELECTRIC COMPANY • Chicago
S&C ELECTRIC CANADA LTD. • Toronto

March 18, 1985

TCC NUMBER 153-4-4

Page 1 of 1

©1985