Installation

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td></td>
</tr>
<tr>
<td>Qualified Persons</td>
<td>2</td>
</tr>
<tr>
<td>Read this Instruction Sheet</td>
<td>2</td>
</tr>
<tr>
<td>Retain this Instruction Sheet</td>
<td>2</td>
</tr>
<tr>
<td>Proper Application</td>
<td>2</td>
</tr>
<tr>
<td>Warranty</td>
<td>3</td>
</tr>
<tr>
<td>Warranty Qualifications</td>
<td></td>
</tr>
<tr>
<td>Safety Information</td>
<td></td>
</tr>
<tr>
<td>Understanding Safety-Alert Messages</td>
<td>4</td>
</tr>
<tr>
<td>Following Safety Instructions</td>
<td>4</td>
</tr>
<tr>
<td>Replacement Instructions and Labels</td>
<td>4</td>
</tr>
<tr>
<td>Location of Safety Labels</td>
<td>5</td>
</tr>
<tr>
<td>Safety Precautions</td>
<td>6</td>
</tr>
<tr>
<td>Shipping and Handling</td>
<td></td>
</tr>
<tr>
<td>Packing</td>
<td>7</td>
</tr>
<tr>
<td>Inspection</td>
<td>7</td>
</tr>
<tr>
<td>Handling</td>
<td>7</td>
</tr>
<tr>
<td>Installation—UnderCover and Vault-Mounted Styles</td>
<td></td>
</tr>
<tr>
<td>Switchgear Placement</td>
<td>8</td>
</tr>
<tr>
<td>Cable Terminations</td>
<td>8</td>
</tr>
<tr>
<td>Grounding</td>
<td>9</td>
</tr>
<tr>
<td>Fault Indicators</td>
<td>9</td>
</tr>
<tr>
<td>Installation—Pad-Mounted Styles</td>
<td></td>
</tr>
<tr>
<td>Enclosure Removal</td>
<td>10</td>
</tr>
<tr>
<td>Tank Placement</td>
<td>11</td>
</tr>
<tr>
<td>Cable Terminations</td>
<td>11</td>
</tr>
<tr>
<td>Enclosure Placement</td>
<td>12</td>
</tr>
<tr>
<td>Grounding</td>
<td>13</td>
</tr>
<tr>
<td>Fault Indicators</td>
<td>13</td>
</tr>
<tr>
<td>Completing the Installation</td>
<td>14</td>
</tr>
<tr>
<td>Gas Pressure Gauge</td>
<td></td>
</tr>
<tr>
<td>Understanding the Gas Pressure Gauge</td>
<td>15</td>
</tr>
<tr>
<td>Gauge Needle Fluctuations from Rapid Ambient Temperature Changes</td>
<td>15</td>
</tr>
<tr>
<td>Dielectric Testing</td>
<td></td>
</tr>
<tr>
<td>Routine Switchgear Testing</td>
<td>16</td>
</tr>
<tr>
<td>Dc Cable Testing and Fault Locating</td>
<td>16</td>
</tr>
<tr>
<td>Very Low Frequency (VLF) Cable Testing</td>
<td>18</td>
</tr>
<tr>
<td>Fault-Interruiter Testing</td>
<td>19</td>
</tr>
<tr>
<td>Resistance Measurement</td>
<td>19</td>
</tr>
</tbody>
</table>

Vista® Underground Distribution Switchgear

UnderCover™, Vault-Mounted, and Pad-Mounted Styles

January 20, 2020
© S&C Electric Company 1997-2020, all rights reserved
Qualified Persons

⚠️ WARNING

The equipment covered by this publication must be installed, operated, and maintained by qualified persons who are knowledgeable in the installation, operation, and maintenance of underground electric power distribution equipment along with the associated hazards. A qualified person is one who is trained and competent in:

- The skills and techniques necessary to distinguish exposed live parts from nonlive parts of electrical equipment
- The skills and techniques necessary to determine the proper approach distances corresponding to the voltages to which the qualified person will be exposed
- The proper use of the special precautionary techniques, personal protective equipment, insulating and shielding materials, and insulated tools for working on or near exposed energized parts of electrical equipment

These instructions are intended only for such qualified persons. They are not intended to be a substitute for adequate training and experience in safety procedures for this type of equipment.

Read this Instruction Sheet

NOTICE

Thoroughly and carefully read this instruction sheet and all materials included in the product’s instruction handbook before installing or operating Vista Underground Distribution Switchgear. Familiarize yourself with the Safety Information and Safety Precautions on pages 4 through 6. The latest version of this publication is available online in PDF format at sandc.com/en/support/product-literature/.

Instruction sheets covering the installation and operations of Vista Underground Distribution Switchgear are included in the “Installation and Operation Information Kit” provided with each switchgear assembly. A catalog dimensional drawing showing cable-locating and anchor-bolt dimensions is also provided in the information kit. All personnel involved with installation and operation of the gear should be thoroughly familiar with the contents of this kit.

This instruction sheet covers the installation of Vista Underground Distribution Switchgear. Along with this instruction sheet are copies of:

- Reference drawings detailing the installation of cable support brackets and wiring diagrams for the current transformers (provided if the switchgear assemblies contain at least one factory-installed motor operator of if catalog number suffice “-Sx” has been specified where “x” is the way on which the auxiliary contacts are installed.)

A variety of optional features are available for Vista Underground Distribution Switchgear. The catalog number stamped on the nameplate affixed to the unit is suffixed with letter-number combinations applicable to the gear furnished.

Retain this Instruction Sheet

Proper Application

⚠️ WARNING

The equipment in this publication must be selected for a specific application. The application must be within the ratings furnished for the equipment. Ratings for this gear are listed on a ratings label at the front of the switchgear. See Specification Bulletin 681-31 for more information.
Warranty

The warranty and/or obligations described in S&C Price Sheet 150, “Standard Conditions of Sale—Immediate Purchases in the United States,” (or Price Sheet 153, “Standard Conditions for Sale—Immediate Purchases Outside of the United States”), plus any special warranty provisions, as set forth in the applicable product-line specification bulletin, are exclusive. The remedies provided in the former for breach of these warranties shall constitute the immediate purchaser’s or end user’s exclusive remedy and a fulfillment of the seller’s entire liability. In no event shall the seller’s liability to the immediate purchaser or end user exceed the price of the specific product that gives rise to the immediate purchaser's or end user's claim. All other warranties, whether express or implied or arising by operation of law, course of dealing, usage of trade or otherwise, are excluded. The only warranties are those stated in Price Sheet 150 (or Price Sheet 153) and THERE ARE NO EXPRESS OR IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. ANY EXPRESS WARRANTY OR OTHER OBLIGATION PROVIDED IN PRICE SHEET 150 (OR PRICE SHEET 153) IS GRANTED ONLY TO THE IMMEDIATE PURCHASER AND END USER, AS DEFINED THEREIN. OTHER THAN AN END USER, NO REMOTE PURCHASER MAY RELY ON ANY AFFIRMATION OF FACT OR PROMISE THAT RELATES TO THE GOODS DESCRIBED HEREIN, ANY DESCRIPTION THAT RELATES TO THE GOODS, OR ANY REMEDIAL PROMISE INCLUDED IN PRICE SHEET 150 (OR PRICE SHEET 153).

Warranty Qualifications

The seller's standard warranty does not apply to components not of S&C manufacture that are supplied and installed by the purchaser or to the ability of the seller's equipment to work with such components.
Several types of safety-alert messages may appear throughout this instruction sheet and on labels attached to the Vista Underground Distribution Switchgear. Familiarize yourself with these messages and the importance of these signal words:

**DANGER**

“DANGER” identifies the most serious and immediate hazards that will likely result in serious personal injury or death if instructions, including recommended precautions, are not followed.

**WARNING**

“WARNING” identifies hazards or unsafe practices that can result in serious personal injury or death if instructions, including recommended precautions, are not followed.

**CAUTION**

“CAUTION” identifies hazards or unsafe practices that can result in minor personal injury if instructions, including recommended precautions, are not followed.

**NOTICE**

“NOTICE” identifies important procedures or requirements that can result in product or property damage if instructions are not followed.

If you do not understand any portion of this instruction sheet and need assistance, contact your nearest S&C Sales Office or S&C Authorized Distributor. Their telephone numbers are listed on S&C’s website sandc.com, or call the S&C Global Support and Monitoring Center at 1-888-762-1100.

**NOTICE**

Read this instruction sheet thoroughly and carefully before installing your Vista Underground Distribution Switchgear.

If additional copies of this instruction sheet are needed, contact your nearest S&C Sales Office, S&C Authorized Distributor, S&C Headquarters, or S&C Electric Canada Ltd.

It is important that any missing, damaged, or faded labels on the equipment be replaced immediately. Replacement labels are available by contacting your nearest S&C Sales Office, S&C Authorized Distributor, S&C Headquarters, or S&C Electric Canada Ltd.
## Location of Safety Labels

![Pad-mounted enclosure diagram](image)

**A**
- **WARNING**
- Keep Out—Hazardous Voltage Inside
- G-6681

**B**
- **DANGER**
- Hazardous Voltage—Always Consider Circuits and Components Live . . .
- G-6700

**C**
- **DANGER**
- Never Drill Into Tank—Hazardous Voltage, Contains Pressurized SF6 Gas
- G-6682

**D**
- **DANGER**
- Keep Away—Hazardous Voltage (“Mr. Ouch”)
- G-6699

**E**
- **WARNING**
- Check Gas Pressure Before Operating Switchgear
- G-6686

**F**
- **WARNING**
- Always Test Voltage Indicator For Proper Operation
- G-6694

**G**
- **WARNING**
- Always Visually Confirm Blade Position
- G-6693
- G-6694 (Option “-L2”)

## Reorder Information for Safety Labels

<table>
<thead>
<tr>
<th>Location</th>
<th>Safety-Alert Message</th>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><strong>WARNING</strong></td>
<td>Keep Out—Hazardous Voltage Inside</td>
<td>G-6681</td>
</tr>
<tr>
<td>B</td>
<td><strong>DANGER</strong></td>
<td>Hazardous Voltage—Always Consider Circuits and Components Live . . .</td>
<td>G-6700</td>
</tr>
<tr>
<td>C</td>
<td><strong>DANGER</strong></td>
<td>Never Drill Into Tank—Hazardous Voltage, Contains Pressurized SF6 Gas</td>
<td>G-6682</td>
</tr>
<tr>
<td>D</td>
<td><strong>DANGER</strong></td>
<td>Keep Away—Hazardous Voltage (“Mr. Ouch”)</td>
<td>G-6699</td>
</tr>
<tr>
<td>E</td>
<td><strong>WARNING</strong></td>
<td>Check Gas Pressure Before Operating Switchgear</td>
<td>G-6686</td>
</tr>
<tr>
<td>F</td>
<td><strong>WARNING</strong></td>
<td>Always Test Voltage Indicator For Proper Operation</td>
<td>G-6694</td>
</tr>
<tr>
<td>G</td>
<td><strong>WARNING</strong></td>
<td>Always Visually Confirm Blade Position</td>
<td>G-6693</td>
</tr>
</tbody>
</table>
Safety Precautions

⚠️ DANGER

Vista Underground Distribution Switchgear operates at high voltage. Failure to observe the precautions below will result in serious personal injury or death.

Some of these precautions may differ from your company’s operating procedures and rules. Where a discrepancy exists, follow your company’s operating procedures and rules.

1. QUALIFIED PERSONS. Access to the Vista Underground Distribution Switchgear must be restricted only to qualified persons.
2. SAFETY PROCEDURES. Always follow safe operating procedures and rules. Always maintain proper clearance from energized components.
3. PERSONAL PROTECTIVE EQUIPMENT. Always use suitable protective equipment, such as rubber gloves, rubber mats, hard hats, safety glasses, and arc-flash clothing in accordance with safe operating procedures and rules.
4. DOORS. High-voltage compartment doors must be securely closed and latched, with padlocks in place at all times unless work is being performed inside the enclosure.
5. KEY INTERLOCKS. Optional key interlocks, if furnished, must be in place. Check the operating sequence of key interlocks to verify proper sequencing. After the switchgear is installed, destroy all duplicate keys or make them accessible only to authorized persons so the key-interlock scheme will not be compromised.
6. OPENING DOORS. Do not apply any undue force when attempting to open a door. The use of undue force may damage the door-latching mechanism.
7. SAFETY LABELS. Do not remove or obscure any of the “DANGER,” “WARNING,” “CAUTION,” or “NOTICE” labels.
8. ENERGIZED BUSHINGS. Always assume that the bushings are energized unless proven otherwise by test, by visual evidence of an open-circuit condition at the load-interrupter switch or fault interrupter, or by observing that the load-interrupter switch or fault interrupter is grounded.
9. BACKFEED. Bushings, cables, load-interrupter switches, and fault interrupters may be energized by backfeed.
10. GROUNDING.
   • Vista switchgear must be connected to a suitable earth ground before energizing and at all times when energized.
   • The ground wire(s) must be bonded to the system neutral, if present. If the system neutral is not present, proper precautions must be taken to ensure the local earth ground cannot be severed or removed.
   • After the switchgear has been completely disconnected from all sources of power and tested for voltage, properly ground the load-interrupter switches and fault interrupters before touching any bushings or components that are to be inspected, replaced, serviced, or repaired.
11. LOAD-INTERRUPTER SWITCH OR FAULT-INTERRUPTER POSITION.
   • Always confirm the Ground/Open/Closed position of the load-interrupter switch or fault interrupter by visually observing the position of the isolating disconnect.
   • Be aware load-interrupter switch or fault interrupter may be energized by backfeed.
   • Be aware load-interrupter switch or fault interrupter may be energized in any position.
12. MAINTAINING PROPER CLEARANCE. Always maintain proper clearance from energized components.
Packing

UnderCover Style and Vault-Mounted Style Vista Underground Distribution Switchgear are shipped in a wooden crate.

Pad-Mounted Style Vista switchgear (enclosure with separate tank) is fastened to a wood skid. The tank is shipped within the enclosure. At the first opportunity, remove all packing materials (cardboard, paper, foam padding, etc.) from the outside of the pad-mounted enclosure. This will prevent the finish from being damaged by rainwater absorbed by the packing materials and will also prevent wind-induced abrasion from loose cardboard.

Inspection

Examine the shipment for external evidence of damage as soon after receipt as possible, preferably before removal from the carrier’s conveyance. Check the bill of lading to make sure that all shipping skids, crates, and containers listed thereon are present.

If there is visible loss and/or damage:
1. Notify the delivering carrier immediately.
2. Ask for a carrier inspection.
3. Note condition of shipment on all copies of the delivery receipt.
4. File a claim with the carrier.

If concealed damaged is discovered:
1. Notify the delivering carrier within 15 days of receipt of shipment.
2. Ask for a carrier inspection.
3. File a claim with the carrier.

Also, notify S&C Electric Company in all instances of loss and/or damage.

Handling

**WARNING**

When handling an enclosure or tank with an overhead hoist, observe standard lifting practices as well as the general instructions below. **Failure to follow these precautions can result in serious personal injury or equipment damage.**

**NOTICE**

Refer to the nameplate affixed to exterior of switchgear assembly for the net weight.

**STEP 1.** Remove and retain the anchor brackets tie wrapped to the enclosure or tank grounding pad. Use 6-foot (1829-mm) or longer hoist slings of equal length to prevent damage to the enclosure or tank during lifting. (Four-foot (1219-mm) hoist slings are acceptable for two-way and three-way enclosures and tanks.) See Figures 1 through 3.

**STEP 2.** Arrange the hoist slings to distribute lifting forces equally between the lifting tabs.

**STEP 3.** Avoid sudden starts and stops.
Switchgear Placement

STEP 1. Remove any packing or foam from around the viewing window and check the gas pressure gauge to make sure it is in the green zone. Contact S&C Electric Company if the gas pressure gauge is not in the green zone. See the “Gas Pressure Gauge” section on page 15 for more information. Remove the switchgear from its crate and lift the gear into place, observing the precautions given in the “Handling” section on page 7. See Figure 4.

STEP 2. Secure the switchgear in place in accordance with the pull box or wall brackets provided by the user.

Cable Terminations

⚠️ DANGER

Before energizing the switchgear, replace the shipping covers on all bushing and bushing wells with elbows or insulated protective caps. Failure to replace the shipping covers on all bushings and bushing wells with elbows or insulated protective caps can result in a flashover and serious personal injury or death.

STEP 3. Remove the shipping covers from the bushings and bushing wells. See Figure 5.
**CAUTION**

ALWAYS follow proper cable-installation practices. When installing cable that will be attached to the switchgear, provide a strain-relief segment to minimize the load on the bushings. Cables must be allowed to expand and flex without putting a significant load on the bushings. For a pit, either loop the cable in the pit or bring it into the pit horizontally and up to the gear at a 90° angle. **Failure to follow these precautions can result in damage to the bushings and bushing wells and subsequent leakage of SF₆ insulating gas.**

STEP 4. Terminate the cables with the elbows, following the elbow manufacturer's instructions. See Figure 6.

**Grounding**

STEP 5. Connect the cable concentric-neutral ground wires to the grounding system as appropriate.

STEP 6. Connect the ground pad of the switchgear to the system ground facility in accordance with the user’s standard grounding practice. See Figure 7.

STEP 7. Use the equivalent of 4/0 copper (or cable sized in accordance with the user’s standard practice) in either a single or multiple connection to realize the maximum momentary rating of the switchgear. For a multiple connection, cables smaller than 1/0 copper or equivalent should not be used.

---

**Figure 6.** Terminate cables with elbows.

**Figure 7.** Connect the switchgear ground pad to a suitable earth ground. Ground in accordance with user’s standard grounding practice (grounding not shown).
Fault Indicators
Fault indicators are to be furnished by the user and installed in accordance with the manufacturer's instructions.

Enclosure Removal

STEP 1. Loosen the pentahead bolts securing the hinged roofs to the enclosure using a pentahead socket wrench with extender or a pentahead tool. See Figure 8.

STEP 2. Lift the hinged roofs upward and secure them with the holders. See Figure 9.

STEP 3. Remove the front panel from the operation compartment and the upper front panel from the termination compartment by loosening the fasteners securing the panels in place and lifting the panels upward. Set the panels aside in a safe, clean place. See Figure 10.

It is important to keep track of which side of the enclosure is the termination side and which side is the operation side after the panels are removed. The operation side panel is larger and has the larger opening. See Figure 10.

STEP 4. Unbolt the enclosure from the skid and remove it from the tank, observing the precautions given in the “Handling” section on page 7. Set the enclosure aside in a protected area. See Figure 11.
Tank Placement

STEP 5. Remove any packing or foam from around the viewing window and check the gas pressure gauge to make sure it is in the green zone. Contact S&C Electric Company if the gas pressure gauge is not in the green zone. See the "Gas Pressure Gauge" section on page 15 for more information. Unbolt the tank from the skid and lift it above the mounting pad, observing the precautions given under the "Handling" section on page 7. Verify the tank is positioned correctly with respect to the cables and anchor bolts. See Figure 12.

STEP 6. Lower the tank into place.

STEP 7. Secure the tank to the pad using the anchor brackets provided. See Figure 16 on page 12.

Cable Terminations

⚠️ DANGER

Before energizing the switchgear, replace the shipping covers on all bushing and bushing wells with elbows or insulated protective caps. Failure to replace the shipping covers on all bushings and bushing wells with elbows or insulated protective caps can result in a flashover and serious personal injury or death.

⚠️ CAUTION

ALWAYS follow proper cable installation practices. When installing cable that will be attached to the switchgear, provide a strain relief segment to minimize the load on the bushings. Cables must be allowed to expand and flex without putting a significant load on the bushings. For a pit, either loop the cable in the pit or bring it into the pit horizontally and up to the gear at a 90° angle. Failure to follow these precautions can result in damage to the bushings and bushing wells and subsequent leakage of SF₆ insulating gas.

STEP 8. Remove the shipping covers from the bushings and bushing wells. See Figure 13.

STEP 9. Terminate the cables with elbows, following the elbow manufacturer’s instructions. See Figure 14 on page 12.
Enclosure Placement

**CAUTION**
When installing the pad-mounted enclosure over the tank, place the side of the enclosure with the “Termination Compartment” label over the terminators and the side of the enclosure with the “Operation Compartment” label over the operating mechanisms. This will ensure the compartments are properly identified and the panels are in their correct locations. The operation compartment side panel is larger.

**STEP 10.** Lift the enclosure into place over the tank, observing the precautions given in the “Handling” section on page 7. See Figure 15.

**STEP 11.** Refer to the catalog dimensional drawing and verify the enclosure compartments are positioned correctly and the enclosure is properly aligned with respect to the anchor bolts.

**STEP 12.** Secure the enclosure to the pad using the anchor brackets provided. See Figure 16.

**NOTICE**
Carefully follow the catalog drawing during enclosure placement. The position of the enclosure on the skid should not be used as a guide for placing the enclosure on the pad.
Grounding

STEP 13. Connect the cable concentric-neutral ground wires to the grounding system as appropriate.

STEP 14. Connect the ground pad of the tank and the ground pad inside the enclosure to the system ground facility in accordance with the user's standard grounding practice. See Figure 17.

STEP 15. Use the equivalent of 4/0 copper (or cable sized in accordance with the user's standard practice) in either a single or multiple connection to realize the maximum momentary rating of the switchgear. For a multiple connection, cables smaller than 1/0 copper or equivalent should not be used. See Figure 18.

Fault Indicators

Fault indicators are to be furnished by the user and installed in accordance with the manufacturer’s instructions. Optional mounting provisions for fault indicators (catalog number suffix “-F1” or “-F2”) are available for pad-mounted style switchgear. If mounting provisions are specified, mount the fault indicators on the mounting brackets and attach the associated sensors to the cables below the cable terminations.
Completing the Installation

**STEP 16.** A resilient closed-cell gasket on the bottom flange of the enclosure protects the finish from being scratched during installation, and isolates it from the alkalinity of a concrete foundation. This gasket also helps to seal the enclosure to the foundation, to guard against entry of wildlife, insects, or weeds, and to discourage tampering. See Figure 19.

In the event the gasket cannot compensate for an uneven foundation, grout the bottom of the enclosure as necessary. Any grout applied should be recessed enough to permit caulking. To complete the installation, caulk around the bottom of the enclosure; a weatherproof temperature vulcanizing (RTV) silicon-rubber compound is recommended. Apply a suitable compound to fill the spaces between the cable and the conduit, and cap all empty conduits to prevent the entry of moisture and wildlife.

**STEP 17.** Reinstall the front panel of the operation compartment and the upper front panel of the termination compartment. These panels are not interchangeable. Lower the hinged roofs and secure them with the pentahead bolts. Then insert a padlock into each hasp. See Figure 20.

**STEP 18.** Wipe down the exterior of the enclosure with a clean, damp cloth. Refinish any scratches or abrasions with S&C touch-up finish and red-oxide primer, which are available in aerosol spray cans. Order catalog number 9999-058 for olive green finish, 9999-080 for light gray finish, and 9999-061 for red-oxide primer. No other finish or primer is approved. The area to be touched up should be cleaned to remove all oil and grease. Sand the area to remove any traces of rust that may be present, and make sure that all edges are feathered before applying primer. See Figure 21.
Understanding the Gas Pressure Gauge

Vista switchgear incorporates a temperature-compensated gas-pressure gauge inside the tank to provide indication of the SF₆ gas pressure. The gas pressure gauge includes four distinct color-coded zones. See Figures 22 and 23.

If the needle is within a particular zone as described below, it indicates the following:

**Green zone:**
The Vista switchgear unit is OK to operate.

**Green/Yellow zone:**
The Vista unit may have lost some gas but is still OK to operate. The unit should be evaluated to determine whether it needs to be refilled with SF₆ gas and repaired accordingly. Contact S&C for assistance.

**Red zone:**
The SF₆ gas may be below the minimum operating pressure for the gear. **Vista switchgear should not be operated if the needle is in the red zone.** Contact S&C for assistance.

**Orange zone:**
The Vista unit has been overfilled in the field or has a defective pressure gauge. An external gauge can be used instead to verify the gas pressure before operation of the device. Contact S&C for assistance.

Gauge Needle Fluctuations from Rapid Ambient Temperature Changes

When the Vista tank experiences rapid changes in ambient temperature, the gas pressure gauge needle may temporarily move to indicate a higher gas pressure when the tank is rapidly cooled or a lower gas pressure when the tank is rapidly heated. This phenomenon may occur, for instance, with sudden, direct exposure to intense sunlight. The gas-pressure gauge uses a small reference gas chamber filled with helium to compensate for ambient temperature and altitude without applying correction factors. The gauge indicates tank pressure by measuring the pressure differential between the gas in the tank and the gas in the gauge. When the tank experiences rapid ambient temperature changes, the smaller volume of gas inside the gauge can change temperature more quickly than the larger volume of gas in the tank, which can lead to temporary movement of the needle. When the temperature stabilizes, the needle will return to its previous position within 1-2 hours.

If a sudden drop or increase in pressure is seen on the gauge, S&C recommends checking with an external gauge or waiting for ambient temperature conditions to stabilize to confirm that the needle has returned to its nominal position.

---

Figure 22. Internal gas-pressure gauge for most Vista switchgear models.

Figure 23. Internal gas-pressure gauge for Vista switchgear models rated 15 kV, 12.5 kA sym. short circuit that have catalog numbers ending in R1.
Dielectric Testing

Routine Switchgear Testing
For the convenience of users who normally perform electrical tests on system components such as switchgear, appropriate withstand test values for Vista Underground Distribution Switchgear are given in Table 1 and in Table 2 on page 17. These test values are significantly greater than the normal operating voltage of the switchgear and are near the flashover voltage of the gear. They should be applied only when the switchgear is completely de-energized and disconnected from all power sources.

When performing electrical withstand tests on Vista Underground Distribution Switchgear, always observe the following precautions. Failure to observe these precautions can result in a flashover, injury, and equipment damage.

1. Completely de-energize the switchgear and disconnect it from all power sources.
2. Terminate bushings with an insulated cap or other appropriate cable termination capable of withstanding the test voltage.
3. Verify that the SF₆ pressure gauge is in the green zone.

### Table 1. Maximum Insulation Test Voltages of Vista Underground Distribution Switchgear

<table>
<thead>
<tr>
<th>Vista Switchgear Rating, kV</th>
<th>Withstand Test Voltage, kV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>50 Hertz</td>
</tr>
<tr>
<td>12</td>
<td>15.5</td>
</tr>
<tr>
<td>24</td>
<td>27</td>
</tr>
<tr>
<td>36</td>
<td>38</td>
</tr>
</tbody>
</table>

① The power-frequency withstand test voltages listed in the table are approximately 80% of the design values for new equipment.
② The dc withstand test voltages listed in the table are approximately 80% of the design values for new equipment.
③ Dc withstand test voltages are given for reference only for those users performing dc withstand tests. The presence of these values does not imply a dc withstand rating or performance requirements for the switchgear. A dc withstand design test is specified for new equipment because the switchgear may be subjected to dc test voltage when connected to the cable. The dc withstand test values listed in the table are approximately equal to the ac peak test voltage.

Dc Cable Testing and Fault Locating
Dc testing of installed cables is performed to determine the condition of the cables and to locate faults. Industry standards like IEEE 400, “IEEE Guide for Making High-Direct-Voltage Tests on Power Cable Systems in the Field,” describe such testing and should be referenced for selection of the test procedures. Dc testing also includes cable “thumping” (the sudden application of dc voltage from a large capacitor for the purpose of fault locating), which causes transients and voltage doubling at the end of the open cable. When the cables are attached to the switchgear, the gear will also be subjected to the dc test voltages.

The dc withstand capability of the switchgear may be reduced because of aging, damage, gas leakage, or electrical or mechanical wear. Therefore, the dc test voltage must be selected such that it does not exceed the withstand limits of the switchgear. Application of dc test voltage greater than the withstand capability of the switchgear can result in a flashover, injury, and equipment damage.

Always verify that the SF₆ pressure gauge is in the green zone before proceeding with any testing.
**DANGER**

Do not exceed the test voltages given in Table 2. Exceeding the test voltages can cause a flashover of the isolating gap or phase-to-phase insulation of the switchgear. **This can lead to a power-frequency fault in the gear or the dc test source, and result in severe personal injury or death.**

**WARNING**

When testing cables connected to energized switchgear, proper isolation of the power-frequency source from the dc test source must be maintained. Follow the recommendations provided by the manufacturer of the dc test equipment or fault-locating equipment. Follow the user’s operating and safety procedures for grounding the cable, connecting the dc test source, isolating the dc test source (in case of flashover), ungrounding the cable, applying the dc test source, discharging the cable, and regrounding the cable.

Vista Underground Distribution Switchgear has been designed to allow dc testing of the cables with the other ways of the gear energized. The integral grounding switch may be used to ground the cable. After testing, the dc test equipment should be used to discharge any stored charge on the cable before grounding with the grounding switch. The dc test voltages and dc cable thumping voltages should not exceed the voltages given in Table 2.

Table 2. Maximum Cable Testing and Cable Thumping Dc Withstand Voltages of Vista Underground Distribution Switchgear

<table>
<thead>
<tr>
<th>Vista Switchgear Rating, kV</th>
<th>Dc Cable Test Voltage, kV</th>
<th>Dc Cable Thumping Voltage, kV&lt;sup&gt;1&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 Hertz</td>
<td>60 Hertz</td>
<td>Impulse (BIL)</td>
</tr>
<tr>
<td>12</td>
<td>15.5</td>
<td>95</td>
</tr>
<tr>
<td>24</td>
<td>27</td>
<td>125</td>
</tr>
<tr>
<td>36</td>
<td>38</td>
<td>150</td>
</tr>
</tbody>
</table>

<sup>1</sup> The dc cable thumping voltage is 50% of the dc cable test voltage because voltage doubling will occur at the open end of the cable, which is assumed to be a unit of Vista Underground Distribution Switchgear.

If the open end of the cable is grounded, the dc cable thumping voltage applied to the cable and switchgear can be increased to the dc cable test voltage.
**Dielectric Testing**

**Very Low Frequency (VLF) Cable Testing**

IEEE Standard 400.2, “IEEE Guide for Field Testing of Shielded Power Cable Systems Using Very Low Frequency (VLF) (less than 1 Hz),” addresses the application of 0.01- to 1-Hz high-voltage ac excitation as one means for evaluating a shielded power cable system during an acceptance test or a maintenance test. The cable system must be taken out of service for this testing.

An acceptance test is a field test made after installation of the power cable system, including terminations and joints, but before the cable system is placed in normal service. A maintenance test is a field test made during the operating life of a power cable system to detect deterioration and to check serviceability of the system.

VLF cable testing may subject the Vista Underground Distribution Switchgear to the ac test voltage when the cables are attached to the switchgear. S&C recommends that the Vista switchgear be completely de-energized and disconnected from all power sources when performing VLF cable testing. However, Vista switchgear has been designed to allow VLF testing of the cables with the other ways of the gear energized, if necessary. A load-interrupter switch or fault interrupter can be placed in its Grounded position to ground the cable. Before proceeding with the VLF cable testing, verify that the Vista switchgear SF₆ pressure gauge is in the green zone.

Upon completion of the VLF cable testing, or an interruption in the testing, the test set must be turned off to discharge the cable circuit and test set. Then, the cable system must be grounded.

The VLF sinusoidal waveform test voltages applied to the Vista switchgear must not exceed the voltages listed in Table 3.

**Table 3. Low-Frequency Cable Testing**

<table>
<thead>
<tr>
<th>Vista Switchgear System Class, kV</th>
<th>Acceptance Test (phase to ground)</th>
<th>Maintenance Test (phase to ground)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>kV, RMS</td>
<td>kV, Peak</td>
</tr>
<tr>
<td>15.5</td>
<td>21</td>
<td>16</td>
</tr>
<tr>
<td>27</td>
<td>32</td>
<td>24</td>
</tr>
<tr>
<td>38</td>
<td>44</td>
<td>33</td>
</tr>
</tbody>
</table>

① Per IEEE Std. 400.2. The most commonly used, commercially available, VLF test set frequency is 0.1 Hz.

② Do not exceed the test voltage recommended by the cable manufacturer.

---

**WARNING**

The VLF ac withstand capability of the switchgear may be reduced due to aging, damage, gas leakage, or electrical or mechanical wear. Therefore, the ac test voltage must be selected such that it does not exceed the withstand limits of the switchgear. Application of ac test voltage greater than the withstand capability of the switchgear can result in a flashover, injury, and equipment damage. Always verify that the SF₆ pressure gauge is in the green zone before proceeding with any testing.

**DANGER**

Do not exceed the test voltages given in Table 3. Exceeding the test voltages can cause a flashover of the isolating gap or phase-to-phase insulation of the switchgear. This can lead to a power-frequency fault in the gear or the VLF test source, and result in severe personal injury or death.

**WARNING**

When testing cables connected to energized switchgear, proper isolation of the power-frequency source from the VLF test source must be maintained. Follow the recommendations provided by the manufacturer of the VLF test equipment. Follow the user’s operating and safety procedures for grounding the cable, connecting the VLF test source, isolating the VLF test source (in case of flashover), ungrounding the cable, applying the VLF test source, discharging the cable, and regrounding the cable.

**WARNING**

When VLF cable testing has been completed, or has been interrupted, you must discharge the cable system and the test equipment. Allow the time needed to fully discharge the cable system and test equipment. Failure to fully discharge the cable system and test equipment can result in serious damage to the cable system and test equipment.
**Fault-Interrupter Testing**
When performing dielectrical tests on Vista Underground Distribution Switchgear, the vacuum fault interrupters will not be subject to voltage across the open gap because the disconnect switch isolates the vacuum interrupters from the test voltage. Because the vacuum interrupter will not be energized across the open gap, there is no exposure to the X-rays normally associated with high-voltage testing of vacuum devices. Routine testing of the vacuum fault interrupters is not recommended. For those users who desire to test the vacuum interrupters, contact the nearest S&C Sales Office for specific instructions.

**Resistance Measurement**

---

**DANGER**
De-energize the Vista Underground Distribution Switchgear before performing the resistance measurements described in this procedure. Follow all applicable safety procedures. Failure to de-energize the Vista Underground Distribution Switchgear before taking resistance measurements can result in serious injury or death.

Resistance measurements are used to look for areas of the gear that may exhibit poor contact between current carrying parts.

Resistance measurements are taken using a four-terminal measuring device that provides at least 100 amperes of current to the main circuit. Resistance measurements should be taken from the bushing conductor across each way to the same phase on each way of the unit. For example, a measurement would be taken from Way 1 Phase A to Way 2 Phase A, from Way 2 Phase A to Way 3 Phase A, from Way 1 Phase A to Way 3 Phase A, from Way 1 Phase B to Way 2 Phase B, etc.

To measure resistance, perform the following procedure:

**STEP 1.** Clamp the two current-carrying probes of the resistance-measuring device to the bushing conductors of the current-carrying path to be measured. See Figure 24. In this example the resistance is being taken between Way 1 Phase A and Way 2 Phase A.

**STEP 2.**

---

**NOTICE**
DO NOT take resistance measurements from the threaded area of the bushing stud. Resistance measurements taken through the threads of the bushing stud will be inaccurate. See Figure 25.

Clamp or touch the voltage-carrying probes of the resistance-measuring device to the flat conductive surface of the bushings that make up the current carrying path. Make sure the measurement probe is in contact with the current-carrying flat face of the bushing conductor rod. If using clamp-style probes, slide the clamp all the way up against the current-carrying face to get a good connection. See Figure 25.

**STEP 3.** Record the resistance measurement. Acceptable resistance values are:
- Less than 500 microohms
- Less than 600 microohms for tie switches

---

**Figure 24. Connecting the resistance measuring device.**

**Figure 25. Take the measurement from the flat current-carrying surface of the bushing.**

● Resistance measurements shown without safety gloves. Please adhere to your company’s standards in regards to using hand PPE when taking resistance measurements.