IntelliRupter® PulseCloser® Fault Interrupter Algorithm Enhances Bushfire-Mitigation Strategy

S&C Featured Solution: PulseClosing® Technology
Location: Canberra, Australian Capital Territory, Australia

Customer Challenge
In Australia, bushfire season lasts most of the year, resulting in some of the nation's most devastating fires. Climate change has also extended the length of fire seasons throughout Australia, drying out vegetation so it is quick to ignite and fuel the spread of bushfires. With this problem on the rise and a sensitive history with bushfires, Australia's regulators mandated that utilities implement bushfire-mitigation strategies using modern protection technology.

Evoenergy, a government-owned utility in the Australian Capital Territory, sought to meet these regulations and protect the 186,000 customers it serves. One of its greatest challenges was detecting high-impedance earth faults using Sensitive Earth Fault (SEF) protection. High-impedance earth faults are often caused by vegetation or broken power line conductors that touch the ground and generate uncharacteristically low current.

Most traditional SEF-protection schemes are unreliable because they lack the required sensing and measurement precision needed to detect very low fault current. Evoenergy’s best option was reclosers because they offer SEF protection, but their fault-detection method requires high current flow—where the resulting sparks during fault-testing can lead to dry vegetation catching fire. Evoenergy sought a new solution that could detect high-impedance earth faults using lower fault current, which could result in a lower risk of vegetation ignition.

“The new high-impedance earth-fault algorithm S&C developed for PulseClosing Technology is a reliable and cost-effective advantage to our bushfire-mitigation strategy.”

– James Cole, Secondary Systems Manager, Evoenergy

Evoenergy sought a new solution for detecting high-impedance earth faults to help meet utility bushfire-mitigation strategy regulations and better protect the customers it serves.
IntelliRupter® PulseCloser® Fault Interrupter Algorithm Enhances Bushfire-Mitigation Strategy

S&C Solution

Evoenergy was familiar with S&C Electric Company from experience using its boric acid SMD® Power Fuses to mitigate bushfire risk throughout the utility’s network. The utility was aware of S&C’s IntelliRupter PulseCloser Fault Interrupters, which use high-precision sensing and measurement methods and a low-pulse fault-testing feature called PulseClosing Technology. This technology uses less than 5 percent of a network’s fault energy to test for faults, significantly decreasing the energy—and sparks—produced by fault-testing. This ability to reduce fire-ignition risk convinced the utility to pilot the fault interrupters.

Evoenergy wanted to take these innovative fault-interrupter features one step further and develop an algorithm to dramatically improve its SEF-protection response to high-impedance earth faults. The utility worked with S&C to create an operating logic map that determined how IntelliRupter fault interrupters would react to greater high-impedance earth-fault scenarios in addition to typical low or high fault-current levels. If the IntelliRupter fault interrupters detected high-impedance earth faults, they would trip and remain open rather than continue to test for the faults. This would stop repeated fault-testing, which otherwise would produce sparks with every test and increase the likelihood of igniting bushfires.

After developing the algorithm logic, S&C updated an IntelliRupter fault interrupter’s firmware and tested its coding and response to ensure the algorithm enabled it to successfully detect high-impedance earth faults in the field. Evoenergy then collaborated with S&C to generate a simplified mathematical network model to simulate and analyze the network’s sensitivity to high-impedance earth faults and examine how the new algorithm would react to mock field scenarios.

The studies considered high-impedance earth faults near the substation and grid edge and worst-case voltage measurements to show how the algorithm and the IntelliRupter fault interrupter’s precision sensing and measurement could help the utility reduce bushfire risk on its grid. S&C then configured a trial IntelliRupter fault interrupter’s settings to meet Evoenergy’s network requirements and successfully ran multiple 11-kV network high-impedance earth-fault tests in S&C’s high-power laboratory.

Before Evoenergy was ready to deploy the device in the field, the utility installed the IntelliRupter fault interrupter in its training yard. S&C performed a test operation to show the utility’s crew how the devices would operate in the field. Additionally, Evoenergy composed test documentation and reports with S&C for internal staff use and regulator distribution. The utility found the materials helpful in building a solid business case that IntelliRupter fault interrupters provide a more reliable and cost-effective advantage to the utility’s bushfire-mitigation strategy. S&C also supported Evoenergy with commissioning services prior to energization.
IntelliRupter® PulseCloser® Fault Interrupter Algorithm Enhances Bushfire-Mitigation Strategy

Results

S&C’s willingness to deeply understand Evoenergy’s network makeup and requirements up front, perform necessary testing to test how the device would operate in the field, and manage the project through completion made a positive impression on the utility. The utility appreciated S&C’s diligence in developing a protection analysis so the IntelliRupter fault interrupter would interoperate with the utility’s network-protection devices.

Evoenergy also presented the algorithm test documentation and reports to Australian regulators. The regulators accepted and approved the test results, agreeing IntelliRupter fault interrupters could effectively test for high-impedance earth faults while significantly reducing fault energy—and that Evoenergy had taken steps toward developing a bushfire-mitigation strategy.

With the success of initial testing, Evoenergy installed multiple IntelliRupter fault interrupters with the algorithm in bushfire-prone areas and is considering further device deployment as part of a full suite of bushfire-mitigation solutions integrated throughout its network.

By collaborating with S&C to develop the SEF algorithm, Evoenergy is confident its system is better prepared to stand resilient to bushfire risk and provide reliable power during high fire-danger days.
IntelliRupter® PulseCloser® Fault Interrupter Algorithm Enhances Bushfire-Mitigation Strategy

November 18, 2019
© S&C Electric Company 2019, all rights reserved
sandc.com 766-1004